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ABSTRACT

The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal

matrix composites reinforced with ceramics fibers induces high thermal stresses in the

matrix. Elasto-plastic analyses - with different degrees of simplification and modelization -

show that an interface layer with a sufficiendy high CTE can reduce the tensile hoop stress

in the matrix substantially.



LNTRODUCTION

Metal matrix composites reinforced with ceramics fibers have attractive properties for

engineering applications. These composites have a high strength associated to a low

density, the ceramics fibers provide a high temperature resistance, and theh- brittle behavior

is compensated to some extent by the ductility of the metal matrix. However, because

ceramics have a low coefficient of thermal expansion (CTE) and metals have a higher CTE,

the induced thermal mismatch is responsible for residual stresses in the composite when

subjected to a change in temperature.

Cracking in the matrix has been observed after cooling down from processing

temperature to room temperature for brittle matrix materials [ I ]. It has been proposed that

the insertion of an adequate interface layer between the fiber and the matrix can reduce the

tensile stresses in the matrix to a level which avoids matrix cracking.

Some numerical parametric studies ([2], [3]) suggested that the optimum interface

layer should have a CTE between those of the mawix and fiber, with a low Young's

modulus and a high thickness. However, these conclusions were based on a questionable

optimization procedure [2] or on limited numerical results and did not provide an

understanding of the problem.

Recently, 3'ansson and Leckie [4] conducted a simplified analysis assuming arigid

fiber and a very thin layer. They concluded that a compensating layer with a sufficiently

high CTE can reduce significantly the residual stresses in the matrix. A complete elastic

analysis was performed by Doghri et al [5], who proposed an optimization procedure

offering a window of Candidate layer materials. Both of the two studies showed that, while

.the hoop stress in the matrix can be reduced substantially, the axial stre'ss in ithe mamx is

less affected by a layer. They also pointed out that plastic yielding may occur in the

interface layer.

In this paper, plasticity is taken into account. The fast part of the study is based on a

three cylinder model, isolating one fiber with an interface layer and a matrix layer (Fig. 1).

Ordy the_:io_g is considered.' _e interface layer is elastic-perfectly plastic while the
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matrix is considered either elastic or elasto-plasdc. A remarkably accurate and efficient

numerical procedure is developed allowing to have approximations of the stresses and

strains fields everywhere in the composite.

In the second part of this study, the accuracy of the three cylinder model is

investigated by studying the response of a unit cell of a hexagonal array of the fibrous

composite. Finite element computations are performed under seveal thermal-mechanical

Ioadings.



NOTATIONS

f fiber

t. layer

m matrix

j f,/,m

Rj external radius ofj

tt = Rt-R f layer thickness

The radii Rf and Rm am related to the fiber volume fraction Cf by Cf = Rm

Ej,vj Young's modulus, Poisson's ratio of j

Xj, _.j Lam_ coefficients ofj

Eiv _ E i

)"J = (1 - 2v j)(1 + v j) ' _j = 2(1+ v j)

aj _ ofj

AT change in temperana'e

Orj radialstress (on.)inj

oOj hoop stress (000) in j

azj axial stress (Ozz) in j

In the same manner, we define the total strains: trj, e0j, ezj

Eft, E_I, Ez_,tand the plastic strains in the layer p P

_j v. Mises equivalent stress in j

In the same way that the v. Mises equivalent stress is related to the distorsion energy, a so-

called damage equivalent stress [6] is related to the total elastic energy and is defined by

a]=Bj (l+vj)+3(l-2vj) L ai ) j

where OHj = (Orj + oOj + Ozj)/3.
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1. Develooment of the Stress-Strain Ana.lvsis for the Axisymmetric Thermal Problem

The composite is not subjected to transverse loading and the outer surface of the

compound cylinder is traction free. The thermal loading is assumed to be axisymmetric

with respect to the z-axis, so that the displacement in the transverse plane is radial: Uj(r).

The fibers are long and the strain and stress distributions are uniform in the z-direction

except at the end regions which are not studied here. A generalized plane su'ain assumption

is made so that e,zj - constant -- • z. The other strains are given by:

Uj
er] = U i and eOj =

r

and there are no shear strains.

One may use the finite element method ff"EM) to solve this problem. But the problem

begin axisymmetric, we developed a procedure which proved to be more flexible and much

less computer time consuming than the FEM. The interface layer is assumed to be elasto-

plastic while the fiber and the matrix are elastic.

We are looking for a solution which will satisfy the following conditions:

(1) The constitutive equations everywhere

(2) Exactly the equilibrium in (f) and (m)

(3) The continuity of the displacement between (f') and (e) Uf = Ul at r = Rf

(4) The continuity of the displacement between (e) and (m) U e = U m at r = Re

(5) The stress free condition at the outer surface of the copound cylinder Orm = 0 at

r- R m

(6) A weak form of the eqttilibdum in (e)

(7) The axial equilibrium condition associated with the generalized plane strain

assumption "rOzjrdr = 0
0
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This solution will not satisfy the continuity of the stress vector at the interfaces (f')/(t) and

(1)/(m). However, it was found that the resulting jump_ are not important. The iterative

procedure adopted is the following:

(i) Pro_se a temperature increment AT

(ii) For the given temperature increment, propose a total strain increment in

(l)

Find stresses in (1) which satisfy the constitutive equations

Find strains and stresses in (f) and (m) which satisfy the conditions

(1), (2), (3), (4) and (5)

- Check if the equilibrium equations (6) and (7) are satisfied:

• If NO, propose another strain increment in (/), i.e. go to (ii)

• If YES, for this temperature, the solution was found.

1.1 Equilibrium Conditions (6") and (7_

Any form of the total strain field in (l) may be assumed, provided that the

compatibility conditions are satisfied. For example, the following form of the total strains

in (t) is assumed

erl = c!- D 1

e0t = c l + D!

where c t and D t are constants to be found.

We have used the present form of the total strain field in (l) because it has a uniform

trace, hence the stress field has a uniform trace also and since e,zt = constant = ez, the stress

Oz./are likely to be almost uniform, which is in agreement with a generalized plane strain

assumption.
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Theradialdisplacement is given as

R 2

U t=ctr+D "'t
r

The local equations of equilibrium in the layer are

_rr 1-r-+;(

We use the same procedure by which the local equations of equilibrium are extended to the

global ones. We multiply the local equations by U! and integrate over the domain of (t) to

give:

This is a weak form of the equilibrium because we assume only a particular form of the

displacement field.

The previous equation leads to the following system

Rt[" 20_rr ]f r _+r(O'rr-C00 ) dr
Rfl Or = 0

2 + 6rr- C00 ) dr = 0

Rf

By partial integration this system becomes
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R t

Rf [" rrJRf

R t R 2
tOf T( -o.._r+R% 1R_=0

Rf VVF eL rrJRf

This system represents the equilibrium condition (6). To this system we add the

equilibrium condition in the z-direction, i.e. equation (7). Since Ozf and Oz.m are constant,

we obtain:

Rf

We now define the following maa'ix notations, which are suitable for numerical analysis.

fl li :Ii ]
Lezj 0 1 ez

IOrl]

{o_}-lo0d
L°,tj

The system of 3 equations of equilibrium can be rewritten as:



Rt R_ arf(Rf)- R_c_rm (Rt)

Gzf + - (_zm

where the upper index T denotes the transposition.

The stresses {¢xt } are implicit funcdon of {e} and the stresses Grf, Ozf, 6rm and Gzm

axe explicit functions of {el. Then, the last system is nonlinear system of 3 equations and

3 unknowns which are the components of (e}. This method looks like a FEM with

DOF (degrees of freedom), which makes it a particularly efficient tool.

We introduce the following matrix notations:

LZezJ

rtt
r

0 0

0 0 °c,10 D t = [N]{e}

Z e z

0

0

where {Ff} and {F m ) designate the external surface forces applied to the layer due to its

contact with the fiber and the matrix.

With these notations, the equilibrium equations can be rewritten again as:



Rt

Rf

It is easily shown that _ther forms of the strains in (t) can be assumed, with the

corresponding expressions of [B] and IN] being substituted into the last equation.

1.2 Iterative Approximation of the Total Strain Increment in the Laver

Keeping the previous notations, we have {At! } = [B] {Ae }.

For the starting iteration, {Ae} = {0} is proposed.

If the solution found in (f), (l) and (m) does not satisfy the equilibrium

equations, the Newton method is used in order to propose another approximation for {Ae}"

{P(e)} + [_-_eF]{Ce} = {0}

where {C e } means a "correction" to {Ae} and

[SF] _t= _ [B]T[H][B]rdr +[h +]

Rr

where [H] is the "tartgent" modulus in each point of (l). If perfect plasticity associated

with avon Mises yield surface is considered, and if the material properties are assumed not

to change with temperature, then the "continuum" expression of the tenso r H during plastic

yielding is
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D isthe deviatoricstresstensorin (1).where Etis theHooke's operatorin(t)and a t

The detailsof the computation of the matrix [h+] are given in Appendix A. This

matrix takes intoaccount the factthat the externallouis applied to (t) are not given

constant,but depend on [e}.

1.3 Stresses in the Laver

Once {Ae} is given, one knows {Agt} everywhere in (0. The stresses (and the

plastic strains) are then computed by integrating the constitutive equations. The method

used is an elastic predictor/plastic correction one. A fully implicit scheme is adopted and

the nonlinear equations are solved by a Newton method. It was shown recently that the

general procedure presented in [7] becomes particularly simple and efficient: no linear

system is solved iteratively, the corrections being found explicitly [8]. The details are not

given here.

2. Numerical Results of the A_isymmetric Thermal Problem

The elastic studies performed by Jansson and Leckie [_] and Doghri et al. [5] proved

that a compensating interface layer with a sufficiently high CTE can reduce significantly the

residual stresses in the matrix. They also show that the hoop stress in the matrix can be

reduced substantially but the axial stress in the matrix is less affected by a layer. These

studies pointed out that the stresses in the layer can be high enough to induce plastic

yielding.

In this section, we will study the effect of a plastic layer on the previous elastic

results. The numerical results given in sections 2.1, 2.2 and 2.3 were found using the

method developed in Section I.

The fiber and the roan'ix are defined by the following data:

Fiber: SiC (SCS6)

Ef = 360 GPa, vf = 0.17, af = 4.9 x 10-6/'C, Rf = 70 p.m

Matrix: Ti3A1

Ern = 75.2 GPa, v m = 0.25, a m = 11.7 x 10-6/'C, ¢3ym = 380 MPa,

11



R m = I lO_un

The radii Rf and Rm are related to the fiber volume fracdon by

A practical optimization procedure is proposed in [5] offering a window of candidate layer

materials. According to this procedure, Silver, for example, seems to be a good candidate

since matrix stresses are considerably reduced.

The propoerties of an Ag layer and the chosen thickness are

E t = 71 GPa, v I = 0.30, cxt = 25.9 x I0-6/'C, ¢_yt = I00 MPa, t! = 10_tm

The temperature dependence of the materials properties will be taken into account in Section

2.4.

2.1 Monotonous _ling

A monotonous cooling corresponding to a change in temperature of AT = -800"C was

performed with the data above. The f'mal values of stresses and strains at the inner radii are

given in Tables 1 and 2, respectively.

As in [5] a reference elastic case, corresponding to a 2 cylinder model (fiber and

matrix, without layer) is used to measure the changes induced by the interface layer.

Analyzing the results, the following observations can be made.

Plasticity in the layer results in a small increase (less than 10%) of the max. Mises

stress or damage stress in the matrix by comparison to the elastic layer case. This explains

why the reductions in these stresses are still important:
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Om = 0.50 if(1)iselasticand Crn -_-0.55 if(I)isplastic

Ott f Oref

The reductioninthemax. hoop stressinthematrixiseven more important:

--_ = 0.37 if (l) is elastic and --_ = 0.22 if (l) is plastic

OOmf OOref

- When the layer is added, all the stresses in the matrix are reduced, but one notices

that:

- Without the layer,the max. tensilestressin the matrix is the hoop stress

- With the layer, the axial stress in the matrix exceeds the max hoop stress and

this trend is accentuated when plasticity in the layer is taken into account:

°zm = 1.79 if(/) is elastic and °zm = 3.46 if (l) is plastic

(YOm °em

- Since the stresses in (l) are reduced when plastic yielding is considered, there

must be an increase in stresses elsewhere. We see that the stresses in (f) decrease and that

Crrm and COm decrease, then it is to be expected that Crzrn increases, by comparison with the

elastic layer situation.

- One observes that vhen the layer is added, the matrix does not yield. So the

assumption which was made at the beginning of this part of the study (elastic matrix) is

legitimate.

- We have mentioned at the beginning of Section 1 that our solution does not

verify the continuity of the stress vector at the interfaces (f)/(l) and (/)/(m). But the
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following results show that the jumps in on. are not too important.

Orf(Rf) = -43.57 MPa

Ort(Rf) -36.27MPa

! ort(Rt) = -36.03MPa

Orm(Rt) - -30. 41MPa

Table 2 gives the strains in (f), (l) and (m). It can be noticed that even when

(l) is considered elastic only, the strains in (l) are important (due to high thermal strains).

When we consider plasticity in (/) the trend becomes accentuated (because the stresses in

(t') are reduced).

2.2 Sensitivity Study

Under a monotonous cooling of AT -- -800"C, the influence of two layer parameters

was studied.

a) The effect of the variation of the layer thickness was considered, all the other

parameters being kept constant. The two cases: (t) elastic and (t) plastic were studied.

t t
Figure 2 shows that if -- < 0.11, the two cases give the same values of the max.

Rf

Mises stress in the matrix. If tt > 0.11 then for a given thickness, the max. M.ises stress

Rf

in the matrix is higher when the layer is plastic.

Best reductions in the max. Mises stress are:

0.5 when (t) is plastic, and it is obtained for tt -= 0.16

Rf

°n_f 0.4 when (t) is elastic, and it is obtained for t¢ _= 0.23

Rf

The same conclusions apply for the damage equivalent stress.
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b) The effect of the variation of the layer yield stress was considered, all the other

parameters being kept constant. Since Mises stress = yield stress in (l) (perfect plasticity),

one knows that ifoyl increases then the stresses in (l) increase and one expects that this

may reduce the stresses in the matrix. But Fig. 3 shows that the value of Oyl does not

affect the Mises stress in the matrix. However, this result leads to another interesting

prediction: if the temperature dependence of properties is taken into account, plasticity in

the layer will indeed occur sooner (since ¢_yl will be smaller) but the matrix will not yield

and the results will not change too much. This will be checked in Section 2.4.

2.3

To gain a preliminary idea on how the composite behaves under thermal cycling, a

linear temperature history (ranging between T 1 = 825"C and T 2 -- 25"C) has been

considered. The results of only 3 cycles will be presented because it was found that the

composite has almost shaken down after 3 cycles for the given temperature amplitude. A

more complete study of the shakedown of the composite will be presented in Section 3.3.

The materials data are those given at the beginning of Section 2.

The mechanical strain is defined by:

1 if i = j and

Figure ,la shows that during all the loading history the axial stress in the matrix exceeds the

max hoop stress and is equal to the max Mises stress. Both the axial stress and max hoop

stress remain tensile during the cycles. It can be seen from Fig. 4b thai the axial

mechanical strain in the matrix also exceeds the max hoop mechanical strain, but their

values remain small.

Figure 5a shows the stress-strain response in the tangential direction at the inner

radius of the interface layer. It was found that the values of the hoop stress and axial stress

in the layer are almost identical. Figure 5b shows that the axial mechanical strain and the
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hoop m_:hardcal swain have almost the same values also.

2.4 Tem tx'rature De_ndence of the Materials Properties

In this part of.the study, the temperature dependence of the materials properties is

taken into account.

The following materials were considered:

Fiber:. SCS6, Matrix: Ti3AI and Layer:. Ag

The materials parameters were compiled from Ref. [9] to [13]. The fiber is elastic and the

layer and the matrix are assumed to be elastic-perfectly plastic. The data are given in Figs.

6a-d.

The finite element package ABAQUS [14] was used. The F.E. mesh used for the 3

(or 2) cyclinder models is given in Fig. 7a. A generalize_ plane strain assumption is made.

More details about the boundary conditions and the modeLization are given in Appendix B.

A monotonous uniform cooling AT = -800"C was applied in each of the two cases: 2

cylinder model (reference case) and 3 cylinder model. Let us recall that in the previous

sections, the reference case was considered to be elastic. The final values of stresses and

strains at the inner radii of each material are given in Tables 3 and 4. These results show

that:

in the reference case (fiber and matrix) the matrix yields. The addition of the

layer avoids yielding in the matrix.

the layer _ges red¢9¢ the hoop stress in the matrix, and this reduction is

important °0m = 0.23.

¢_0ref

It is remarkable to notice that the reduction in the hoop stress (with the same value) as

well as the fact that the axial stress in the matrix exceeds the max hoop stress were

observed in the previous part of this study when the temperature dependence of the

materials properties has not been taken into account. One also notices that the values of the

strains are almost identical to those obtained in the previous part. We may conclude that,

from a qualitative point of view, taking into account the plasticity in the lgycr is more
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important than the temperature dependence of the materials properties.

Figure 8a shows that the addition of the interface layer reduces the max Mises in the

matrix and avoids plasticity to occur in the marx. Fig: 8b shows that the interface layer

can reduce dramatically the max hoop stress in the matrix, while the axial stress in the

matrix is increased:

0.23 and = 1.42

aOref (_zref

3. Thermal-Mechanical Computations for a Hexagonal Array. of the Com_site

The manufacture and testing of composite materials is demanding in time and effort

so that there is special need for procedures which can help determine the macroscopic

properties of the materials from the properties of the constituents. Success in this endeavor

would mean that prediction of composite properties would bypass expensive and time-

consuming manufacture and test procedures.

The so-caUed homogenization procedure is used to predict the macroscopic properties

of the composite from the properties of the individual constituents.

The composite under consideration is composed of a hexagonal array of SCS6 fibers

coated with the interface layer, in a Ti3AI roan'ix (Fig. 9). A hexagonal array presents more

symmetries then a square array. Taking into account the structure periodicity, the problem

can be reduced, for symmetric loadings, to the study of a single unit cell (ODBA), shown

in Fig. 9, with the appropriate boundary conditions, as detailed in Appendix B.

Resuls for the unit cell under thermal loading only will allow to appreciate the validity

of the 3 cylinder model used earlier. With the unit cell, it will be also possible to study the

composite behavior under transverse mechanical loading since the 3 cylinder model is

clearly not adequate for non-axisymmetric problems. The study was conducted using

ABAQUS [14]. The F.E. mesh for the cell is shown in Fig. 7b.

The matrix and the interface layer are assumed to be elastic-perfectly plastic, while the

fiber remains elastic. The materials properties of the 3 materials are temperature dependent.
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3. I Monotonous Cooline

A monotonous uniform cooling (AT = -800"C) was applied to the unit ceil. The

resulting values of stresses and su'ains were found to be almost identical to those obtained

for the 3 cylinder model, and presented in section 2.4. So, for axisymmetric problems, the

3 cyLinder model seems to bca simple but accurate representation.

3.2 FL_st yield points in the matrix

Several proportional monotonously increasing thermal-mechanical loadings were

applied to the unit cell. The mechanical loading is an average sa'css I: 11 corresponding to a

1:Rggtil.S',._ uniaxial stress state in the I-direction (Z 11 ;_ 0, Zij = 0 if i ¢ I or j ;_ I). The

initial temperature is T o ffi 25'C, and two initial stress states were considered:

no initial residual stresses,

initial residual messes due to a cooling down from

Yi = 825"C toYo = 25"C

The pointsof firstyieldin the matrix for each case are reported in Fig. 10. The results

show thatthe_ offera r_serveof elasticitytothematrixand thecomposite.

3.3

Thermal cycling is applied to the composite under a constant macroscopic su'ess Y-11

in the 1-direction. Shake down is obtained when the macroscopic strain keeps the same

value at the end of each cycle. Limit shake down points are reported in Fig. 10 .

In excess of the shake down limit values, the composite rachets on each cycle of

thermal loading. Inside the shake down region, the composite behaves elastically. The

results of Fig. 10 show that the particular interface layer (Ag) considered as an example in

this work does not extend the temperature range for shake down in the composite. The

reason is that the yield stress of this layer is too low. As pointed out in [4], to improve the

low cycle fatigue of the composite, it is desirable to have a layer with a high yield stress.
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CONCLUSIONS

The optimization procedure proposed in [5] on the basis of an elastic study allows to

have good candidate layer materials. The elasto-plastic anMysis conducted here conf'u'ms

that such interface layers can reduce the hoop stress and the v. Mises equivalent stress in

the matrix significantly. However, the axial stress in the matzix is less affected by a layer

(and it may even increase). This implies that these layers could be successful in composites

where predominafly radial cracking is observed in the matrix. The interface layer should be

ductile enough to sustain relatively high strains. It should also have a yield stress high

enough to improve the range of shake down of the composite.

It appears that taking into account plasticity is much more important than the

temperature dependence of the materials properties. Comparison between the results given

by the 3 cylinder model and a unit cell of a hexagonal array shows that for axisymmetric

problems the concentric cylinder is a simple but accurate model.
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_. Stressesin (f) and(m) and contributions of (f) and (m) to the incremental

stiffness matztr,.

The fiber and the matrix being assumed here to be elastic, their strain and stress fields

are completely defined by the knowledge of 3 constants: cf, c m, D n (see [5]).

The solution in (f) is found by solving eqn. (3):

cfRf c/Rf + D Rt2 _ cf = c t + D l
= tRf

The radial and longitudinal stresses in (f) at r = Rf are then:

Off = 2(_.f + _tf)cf + _.fe z - (3Xf + 2gf)tzfAT

_zf = 2kfcf + (kf + 2_tf)e z - (3_.f + 2_tf)ctfAT

The solution in (m) is found by solving eqn. (4) and (5):

R 2

CmRt+ v-_Dm = ctR t+DtR t

m

2(_. m + I.I.m)Cm + _.mCz - 2t.tmD m - (3_. m + 2/J.m)amAT = 0

That gives

D
m

= kme z + 2(k m + IJ.m)(C t + D_) - !3kin + 2l.tm)am AT

2la.m +2(k m + t/m)I_'_] 2
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and
R 2

Then. the radial and longitudinal stresses in (m) at r = R I are

I :l2Orm = 2(_, m + }.t.m)Cm + _,mez - 2_, m D m - (3_, m + 2Ia,m)amAT

Ozm = 2)"mCm + (_'m + 2_'m)ez - (3_'m + 2_'m)amAT

Computation of [h +]

The matrix [h +] contains the partial derivatives of the stresses off, Orm(Rl), ozf and

¢_zm with respect to the components (c t, De and ez) of {e} (see Sections 1.1 and 1.2).

* Fiber contribution

We have

OCf

Oct

OCf =(Re] 2 and ocf=0

2(_.f + gf) = 2(XfOCl' _D1 + _f) _t

OCf
_Orf = 2(_.f + _.f)_---- + _.f
_e z oe z

OOzf OCf _o z' OC
= 2_.f--, el = 2Xf._fL

OCl OCt _Dt u_, t

9.3



= 2kf_ez + (kf + 21.1f)ae z

• Matrix contribution:

We have

a¢
Z

X
111

Oct = t. RtJ °_c* =°_Dt`°_ez -t, Rt,J °_ez

( R__.m."_2_D
= + rn+_ m_e z 2(km IXm) aez-21"im_RtJ Oc t

c_O'zm o_Cm o_O'zm

_c t = 2_'m'_t = 0D"-'_

C]azm acm
= 2),.m .-_-- + (X,m + 2hi.m)

z z
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_. Modelization and Finite Element Discretization

(a) Two and Tht_ Cylinder Models

Because of the symmetry of the problem,'only a quarter of the cross section is

considered. The dimensions and the mesh used ate shown in Fig. 7a. ABAQUS

generalized plane strain elements CGPE6 and CGPE5 were used, two extra nodes (EXI

and EX2) are needed to impose the generalized plane strain condition. The node EXI has

one degree of freedom ('DOF) representing the longitudinal displacement which is the

increase in thickness of the model. The node EX2 takes care of the rotations of the end

planes, and these are prescribed to be zero.

The normal displacements of the nodes of the 2 straight edges of the section in Fig.

7a are imposed to be zero. The two cyUnder model (fiber and matrix) is simply obtained by

saying that the layer material is identical to the matrix one.

(b) Unit Cell

The composite is composed of a hexagonal array of SCS6 fibers coated with the

interface layer, in a Ti3AI matrix. The transverse section is given in Fig. 9. The following

approach considered in [15] was kept in this study.

Edge effects will not be considered in this study, and hence the analysis can be done

using the theory of homogenization. We consider symmetric loading such that the edges of

the unit cell as well as the axes 01 and 02, will remain straight during deformation. Hence

only a quarter of the unit cell need to be considered for analysis, and this is taken to be the

positive quadrant of the 01,2 axes.

If this quarter cell (OFEA) is isolated and allowed to deform symmetrically,it will

undergo displacements as shown in Fig. 1 la. The centerline DCB, about which the region

is skew-symmetric, will displace as shown. If (Cul, Cu2) are the displacements of C,

(Pul, Pu2) are the displacements of a point P on CB, and (Qul, Qu2) are the

displacements of a point Q on DC such that QC = CP, then:
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Cu 1 = Cu2 - O,

Pul +Qul ,- 0, and

Pu2 +Qu2- 0

If this skew-symmetry is taken into account, only the half (ODBA) of the quarter cell

need to be analyzed. The deformed shape of (ODBA) is shown in Fig. 1 lb, after giving it

a rigid body translation so that points in the side OD do not undergo u2 displacements.

In analyzing the region (ODBA), the boundary conditions to be used are:

i. Along OD, u2 = 0

ii, Along OA, u I = Au 1

iii. Along BA, u2 =Au2

iv. Along DB, for points such as P and Q,

Pul + Qul = 0

Pu2 + Qu2 = Au2

The finite element mesh used is given in Fig. 7b. The type of elements is the same as

in section (a).

With the boundary conditions given earlier, the key displacements of the F.E. model

are the ul and u2 displacements of the node A and the u3 displacement of the extra node

EX 1. In terms of these nodal displacements, the average (macroscopic) direct strains in the

composite are given byi

ul(A) u2(A) u3(EXl)
£1! = - ._"7"/_--" 1_22 = =h ' E33 1 :

""h
2
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Stresses in Matrix

Stress rr 0 0 7-, Mises Damage

a O*

Ref. o (MPa) -187.3 442.2 372.0 597.5 602.5

(f) o (MPa) -50.4 163.5 292.8 300.2 320.3

elastic o/ore f 0.27 0.37 0.79 0.50 0.53

(/) o (MPa) -30.4 98.7 342.0 327.5 342.7

plastic O/Ore f 0.16 0.22 0.92 0.55 0.57

Stresses in Layer

Stress rr 0 0 zz Mises Damage

(l) elastic o (MPa) -260.1 1529.5 1437.1 1745.2 1901.7

(g) plastic o(MPa) -36.3 64.9 62.5 100.0 98.8

Stresses in Fiber

Stress rr 0 0 z,.z Mises Damage

Ref. o (MPa) -187.3 - 187.3 -546.5 359.3 536.0

(l) elastic o (MPa) -260.1 -260.1 -780.5 520.4 763.8

(g) plastic o (MPa) -43.6 -43.6 -417.8 374.2 406.6

Table 1. Stresses at the Inner Radii of the Compound Cylinder after Monotonous CooLing
(Materials properties given at room temperaah,'e)
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Stuns in MATRIX

Strains rr eo zz

Reference 8 (%) -1.45 -0.41 -0.52

(t)das_c e (%) -I.15 -0.80 -0.58

(/)plastic 8 (%) -I.12 -0.90 -0.50

Them,.al strains: Otn_T = -0.94%

Swains in LAYER

Sn'a.ms

(f) elastic

(l) plastic

rr 00 zz

e (%) -3.69 -0.41 -0.58

e (%) -5.27 -0.38 -0.50

eP (%) 3.10 1.60 1,50

Thermal strains: ctlAT = -2.07%

S_ains in FIBER

Strains rr 0 0 zz

Reference 1_(%) -0.41 -0.41 -0.53

(t) elastic e (%) -0.41 -0.41 -0.58

(t) plastic e (%) -0,38 -0,38 -0.50

Thermal strains: afAT = -0.39%

Table 2. Slrains at the Inner Radii of the Compound Cylinder after Monotonous Cooling
(Materials pmpemes given at room temperature)
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Stresses in Matrix

Stress rr 00

Reference o'(MPa) -130.8 261.7

•3 cylinder O (MPa) -13.43 61.82

axxlel O/Oref 0.I0 0.23

zz Mises Damage

O O*

235.4 380.0 377.7

335.0 317.5 329.3

1.42 0.83 0.87

Stresses in Layer

Stress rr 0 0 zz Mises Damage

3 cylinder o (MPa) -1.40 98.13 99.07 100.0 117.4

Stresses in Fiber

Stress rr 0 0 zz Mises Damage

Reference o (MPa) - 159.7 -159.7 -503.7 344.0 491.3

3 cylinder o'(MPa) -41.18 -41.18 -426.7 385.5 415.8

model O/Ore f 0.26 0.26 0.85 1.12 0.84

Table 3. Stresses at the Inner Radii of the Compound Cylinder after Monotonous Cooling

(temperature dependence of materials properties taken into account)
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Strainsin ,MATRIX

Sn-ain(%) err EoO ezz

Reference -1.61 -0.437 -0.517

3 cylinder -1.08 -0.961 -0.506

Accumulated

plastic strain

0.34

0

Swains inLAYER

S a"ain (%) err %0 ezz

Accumulated

plastic strain

3 cylinder -5.00 -0.594 -0.506 2.94

Strains in FIBER

Strain (%) err e0e ezz

Reference -0.405 -0.405 -0.517

3 cylinder -0.381 -0.381 -0.506

Table 4. Strains at the Inner Radii of the Compound Cylinder after Monotonous Cooling
(temperature dependence of materials properties taken into account)
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